On some types of λ -continuous function in Bitopological Spaces

By

Yiezi kadham mahdi Department of mathematics, college of education ,Babylon university 2007

Abstract:

[singal and singal ,[1968] introduced several properties of almost continuous mapping and [T.Noiri , 1990] introduced a weak form of faint continuity . [Hassna H. and sajda K. , 2005] introduced λ -continuity in bitopological spaces .the purpose of this paper is to introduce and study some types of λ -continuity in bitopological spaces with some relation between them.

Introduction:

The open set In the special bitopological space $(X\Psi,\Psi^{\alpha})$ denoted by λ -open set and the collection of all λ -open sets forms a topological space on X denoted by Ψ_{λ} greater than Ψ . [N.Levine, 1961] introduced the concept of weak continuity as a generalized of continuity, later [Hussain,1966] introduced almost continuity as another generalization and [Anderew and whitlesy, 1966]introduced the concept of closure continuity which is stronger than weak continuity.[singal and singal, 1968] introduced anew almost continuity which is different from that of hussain.the purpose of this paper is to further the study of the concept of strong λ -continuity and almost strongly λ -continuity, faintly λ -continuity, and weakly λ -continuity in bitopological spaces.

A function f: $(X, \Psi, \Psi^{\alpha}) \rightarrow (Y, \xi, \xi^{\alpha})$ is weakly λ -continuous function at a point $x \in X$ if given any ξ -open set V in Y containing f(x), there exist λ -open set U containing x such that f(U) cl_{\xi}(V).if the condition is satisfied at each $x \in X$ then f is said to be weakly continuous function. the function f is strongly λ -continuous function at $x \in X$ if given any ξ -open set V in Y containing f(x), there exist λ -open set U containing x such that f(cl_{\U}(U) (V).if the condition is satisfied at each $x \in X$ then f is said to be strongly λ -continuous function, and it is called almost λ -continuous if for each point $x \in X$ and each ξ -open set V in Y containing f(x) there exist λ -open set U in X containing x such that f(U) int cl_{\xi}(cl_{\xi}(V)). the function f is said to be almost strongly λ continuous if and only if for ach $x \in X$ and ξ -nbd V of f(x) there exist λ -open set U containing x such that f(cl_{\U}(U)) int cl_{\xi}(cl_{\xi}(V)). A bitopological space (X, Ψ, Ψ^{α}) is called urysohn if for every $x \neq y$ in X there exist Ψ -open sets U, V in X such that $x \in U$.y $\in V$ and cl_{\U}(U) cl_{\U}(V)=Ø and if (X, Ψ) is Urysohn space then (X, Ψ, Ψ^{α}) is also urysohn space..

From the definitions stated above ,one can easily obtain the following diagram

Strongly λ -continuous $\Rightarrow \lambda$ -continuous \leftarrow Faintly-continuous \bigcup

Almost strongly λ -continuous \Rightarrow almost λ -continuous \Rightarrow weakly λ -continuous

1- λ -continuous and strongly λ -continuous function

Theorem (1-1): let f: $(X, \Psi, \Psi^{\alpha}) \rightarrow (Y, \xi, \xi^{\alpha})$ be strongly λ -continuous and g: $(Y, \xi, \xi^{\alpha}) \rightarrow (Z, \omega, \omega^{\alpha})$ be λ -continuous function then gof is strongly λ -continuous. Proof: exist by definition.

Theorem(1-2): if f: $(X, \Psi, \Psi^{\alpha}) \rightarrow (Y, \xi, \xi^{\alpha})$ is λ -continuous such that X is extremely disconnected then f is strongly λ -continuous.

Proof: let $x \in X$ and V is ξ -nbd of f(x) in Y, since f is λ -continuous there exist λ -open set U containing x such that $f(U) \subseteq V$ and since (X, Ψ) extremely disconnected then f (cl Ψ (U) \subseteq V and then f is strongly λ -continuous.

Theorem(1-3): A function f: $(X, \Psi, \Psi^{\alpha}) \rightarrow (Y, \xi, \xi^{\alpha})$ is λ -continuous if and only if cl $_{\Psi}(f^{-1}(V)) \subseteq f^{-1}(cl_{\xi}(V))$ for each ξ -open set V in Y.

Poof: let V is ξ -open set in Y, $f^1(cl_{\xi}(V))$ is λ -closed set in X, now $V \subseteq cl_{\xi}(V)$ then $f^1(V) \subseteq f^1(cl_{\xi}(V))$ and then $cl_{\Psi}(f^1(V)) \subseteq cl_{\Psi}(f^1(cl_{\xi}(V))) = f^1(cl_{\xi}(V))$.

Conversely, let V is ξ -closed set in Y then cl $_{\Psi}(f^1(V)) \subseteq f^1(cl_{\xi}(V)) = f^1(V)$. now since $f^1(V) \subseteq cl_{\Psi}(f^1(V))$ then cl $_{\Psi}(f^1(V)) = f^1(V)$ there for $f^1(V)$ is λ -closed set. f is λ -continuous function.

Theorem (1-4): let : $(X, \Psi, \Psi^{\alpha}) \rightarrow (Y, \xi, \xi^{\alpha})$ be strongly λ -continuous such that X is regular space and g: $(X, \Psi, \Psi^{\alpha}) \rightarrow (X \times Y, \Psi \times \xi, \Psi^{\alpha} \times \xi^{\alpha})$ be the graph mapping given by g(x)=(x,f(x)) for each $x \in X$ then g is strongly λ -continuous.

Proof: let $x \in X$ and w be $\Psi \times \xi$ -open set in $X \times Y$ containing g(x) .then there exist Ψ -open set G in X and ξ -open set H in Y such that $g(x)=(x,f(x))\in G \times H \subseteq w$, since X is regular space then there exist Ψ -open set B in X such that $cl_{\Psi}(B)\subseteq G$. since f is strongly λ -continuous there exist λ -open set U containing x such that $U\subseteq G$ and $f(cl_{\Psi}(U))\subseteq V$. let $C=U\cap B$ then C is λ -open set and $g(cl_{\Psi}(U))\subseteq cl_{\Psi} \times H\subseteq G \times H\subseteq w$ then g is strongly λ -continuous function.

Theorem(1-5) : let $(X, \Psi, \Psi^{\alpha}) \rightarrow (Y, \xi, \xi^{\alpha})$ be λ -continuous and

g: $(X, \Psi, \Psi^{\alpha}) \rightarrow (X \times Y, \Psi \times \xi, \Psi^{\alpha} \times \xi^{\alpha})$ be the graph mapping given by g(x)=(x, f(x)) for each $x \in X$ then g is λ -continuous.

Proof: let $x \in X$ and let w be $\Psi \times \xi$,-open set in $X \times Y$ containing g(x) then there exist Ψ -open set G in X and ξ -open set H in Y such that $g(x)=(x,f(x)) \in G \times H \subseteq w$ since f is λ -continuous there exist λ -open set U containing x such that $U \subseteq G$ and $f(U) \subseteq H$. there for $g(U) \subseteq G \times H \subseteq w$ then g is λ -continuous.

Definition(1-6): let f: $(X, \Psi, \Psi^{\alpha}) \rightarrow (X, \Psi_A, \Psi^{\alpha}_A)$ be a function such that X is Urysohn space where A \subseteq X and f/A is the identity function on A then f is λ -retraction

Theorem(1-7) : let A be a subset of X and f: $(X, \Psi, \Psi^{\alpha}) \rightarrow (X, \Psi_A, \Psi^{\alpha}_A)$ be λ retraction of X onto A if X is Urysohn space then A is λ -closed subset of X. Proof : suppose that there exist $x \in cl(A)/A$ since f is λ -retraction we have $f(x) \neq x$. since X is Urysohn space then there exist λ -open sets U,V such that $x \in U$ and $f(x) \in V$, $cl_{\Psi}(U) \cap cl_{\Psi}(V) = \emptyset$. Let w be any λ -open set containing x then U \cap w is λ -open sets containing x and then $cl_{\Psi}(U \cap w) \cap A \neq \emptyset$. Now since $x \in cl(A)$ then $y \in cl_{\Psi}(U \cap w) \cap A$. since $y \in A$, $f(y) = y \in cl_{\Psi}(U)$ and hence $f(y) \notin cl_{\xi}(V)$, from that we get $f(cl_{\Psi}(w))$ is not contained in $cl_{\xi}(V)$ and this is contradiction.

2- λ -continuous function and weakly λ -continuous.

Theorem(2-1): if let $f: (X, \Psi, \Psi^{\alpha}) \rightarrow (Y, \xi, \xi^{\alpha})$ is weakly λ -continuous such that (X, Ψ) extremely disconnected then $cl_{\Psi}(f^{-1}(V)) \subseteq f^{-1}(cl_{\xi}(V))$ for each ξ -open set V in Y. Proof: let V is ξ -open se in Y ,then $f^{-1}(cl_{\xi}(V))$ is λ -open set in X and $f^{-1}(V) \subseteq (f^{-1}(cl_{\xi}(V)))$, then $cl_{\Psi}(f^{-1}(V)) \subseteq cl_{\Psi}(f^{-1}(cl_{\xi}(V)))$, since X is extremely

disconnected cl Ψ (f¹(V)) \subseteq f¹(cl ξ (V).

Theorem(2-2): a mapping $f: (X, \Psi, \Psi^{\alpha}) \rightarrow (Y, \xi, \xi^{\alpha})$ is weakly λ -continuous if and only if $f^{1}(V) \subseteq int_{\Psi}(f^{1}(cl_{\xi}(V)))$.

Proof: let f is weakly λ -continuous and V is ξ -open set in Y then $f^1(cl_{\xi}(V))$ is λ -open set in X ,since $int_{\Psi}(f^1(cl_{\xi}(V))) = f^1(cl_{\xi}(V))$ then

$$f^{1}(V) \subseteq f^{1}(\operatorname{cl}_{\xi}(V)) = \operatorname{int}_{\Psi}(f^{1}(\operatorname{cl}_{\xi}(V))).$$

Sufficiency, let $x \in X$ and V is ξ -nbd of f(x) in Y then $x \in f^{-1}(V) \subseteq int_{\Psi}(f^{-1}(cl_{\xi}(V)))$.let $U=int_{\Psi}(f^{-1}(cl_{\xi}(V)))$.then U is λ -open set containing x and $f(U) \subseteq cl_{\xi}(V)$ and there for f is weakly λ -continuous

Theorem(2-3): let f: $(X, \Psi, \Psi^{\alpha}) \rightarrow (Y, \xi, \xi^{\alpha})$ is weakly λ -continuous such that Y is extremely disconnected space then f is λ -continuous.

Proof: let $x \in X$ and V is ξ -nbd of f(x), since f is weakly λ -continuous there exist λ -open set U containing x such that $f(U) \subseteq cl_{\xi}(V)$, since (Y,ξ) extremely disconnected then $f(U)\subseteq V$ and then f is λ -continuous.

Theorem(2-4): let f: $(X, \Psi, \Psi^{\alpha}) \rightarrow (Y, \xi, \xi^{\alpha})$ is weakly λ -continuous such that (Y, ξ) is extremely disconnected space then f is almost λ -continuous. Proof: see the proof of theorem(2-3)

III- λ -continuous function and almost λ -continuous.

Theorem(3-1): if the mapping $f: (X, \Psi, \Psi^{\alpha}) \rightarrow (Y, \xi, \xi^{\alpha})$ is λ -continuous such that (X, Ψ) is extremely disconnected then $cl_{\Psi}(f^{1}(V)) \subseteq f^{1}(cl_{\xi}(V))$ for each ξ -open set V in Y.

Proof: .let V is ξ-open set in Y and since f is λ-continuous $f^{1}(V)$ is λ-open set ,since we have that $f^{1}(V) \subseteq f^{1}(cl_{\xi}(V))$ and (X, Ψ) is extremely disconnected ,there for cl $_{\Psi}(f^{1}(V) \subseteq f^{1}(cl_{\xi}(V))$.

Theorem(3-2): let f: $(X, \Psi, \Psi^{\alpha}) \rightarrow (Y, \xi, \xi^{\alpha})$ is almost λ -continuous and (Y, ξ) extremely disconnected then f is λ -continuous function.

Proof: let $x \in X$ and V is ξ -nbd of f(x) since f is almost λ -continuous there exist λ -open set U containing x such that $f(U) \subseteq int_{\xi}$ (cl $_{\xi}(V) \subseteq cl _{\xi}(V)$ and since (Y,ξ) is extremely disconnected $f(U) \subseteq V$ and then f is λ -continuous.

Theorem(3-4): let f: $(X, \Psi, \Psi^{\alpha}) \rightarrow (Y, \xi, \xi^{\alpha})$ is almost λ -continuous f¹(V) λ -pen set in X for each regular -open set V(resp. semi- open set V) in Y. Proof: exist by definition.

Proposition(3-5): a function f: $(X, \Psi, \Psi^{\alpha}) \rightarrow (Y, \xi, \xi^{\alpha})$ is almost λ -continuous if and only if $f^{1}(V) \subseteq int_{\Psi}(f^{1}(int_{\Psi}(cl_{\xi}(V)) \text{ for each } \xi\text{-open set } V \text{ in } Y$ proof: let f is almost λ -continuous and V is ξ -open set in Y then $f^{1}(int_{\Psi}(cl_{\xi}(V)) \text{ is } \lambda\text{-pen set in } X \text{ and } V \subseteq int_{\xi}(cl_{\xi}(V))$ then we have that $f^{1}(V) \subseteq f^{1}(int_{\xi}(cl_{\xi}(V))=int_{\Psi}(f^{1}(int_{\xi}(cl_{\xi}(V)))$. sufficiency, let $x \in X$ and V is $\xi\text{-nbd of } f(x)$ in Y then $x \in f^{1}(V) \subseteq int_{\Psi}(f^{1}(int_{\xi} (cl_{\xi}(V)) . let U = int_{\Psi}(f^{1}(int_{\xi} (cl_{\xi}(V)) then U is and of x and U \subseteq f^{1}(int_{\xi} (cl_{\xi}(V)) and then f(U) \subseteq (int_{\xi} (cl_{\xi}(V) there for f is almost \lambda-continuous .$

Proposition(3-6): let f: $(X, \Psi, \Psi^{\alpha}) \rightarrow (Y, \xi, \xi^{\alpha})$ is almost λ -continuous then f¹(V) is λ -open set in X for each ξ -regular open set in Y.

Proof: let V is ξ -regular pen set in Y then V is ξ -open set , since f is almost λ continuous there exist λ -open set U in X such that $f(U) \subseteq int_{\xi}$ (cl $_{\xi}(V)$ and then $f(U) \subseteq V$, there for $f^1(V)$ is λ -open set in X.

Theorem(3-7): almost λ -continuous function $f:(X, \Psi, \Psi^{\alpha}) \rightarrow (Y, \xi, \xi^{\alpha})$ such that Y is ξ -extremely disconnected is λ -continuous if and only if $int_{\Psi}(f^{-1}(V)) = f^{-1}(int_{\xi}V)$ Proof: let $x \in X$ and V is ξ -nbd of f(x), since f is almost λ -continuous there exist λ -open set U containing x and $f(U) \subseteq (int_{\xi} (cl_{\xi}(V) \text{ and since } (Y, \xi) \text{ is extremely disconnected } f(U) \subset V$, there for f is λ -continuous.

Conversely, let f is λ -continuous and V is ξ -open set, by theorem(3-5) $f^{1}(V) \subseteq int_{\Psi}(f^{1}(int_{\xi}(cl_{\xi}(V)) = int_{\Psi}(f^{1}(int_{\xi}(V)) = int_{\Psi}(f^{1}(V))$ and then $f^{1}(int_{\xi}(V)) \subseteq int_{\Psi}(f^{1}(V))$, also $int_{\Psi}(f^{1}(V)) \subseteq f^{1}(V) = f^{1}(int_{\xi}(V))$ from that we get

 $f^1(\operatorname{int}_{\xi}(V)) \subseteq \operatorname{int}_{\Psi}(f^1(V))$, also $\operatorname{int}_{\Psi}(f^1(V)) \subseteq f^1(V) = f^1(\operatorname{int}_{\xi}(V))$ from that we get $\operatorname{int}_{\Psi}(f^1(V)) = f^1(\operatorname{int}_{\xi}(V))$.

Theorem(3-8): let f: $(X, \Psi, \Psi^{\alpha}) \rightarrow (Y, \xi, \xi^{\alpha})$ is almost λ -continuous such that (X, Ψ) extremely disconnected then f is almost strongly λ -continuous.

Proof :let $x \in X$ and V is ξ -open set containing f(x), since f is almost λ -continuous there exist λ -open set U containing x such that $f(U) \subseteq int_{\xi}(cl_{\xi}(V))$, since X is Ψ -extremely disconnected $f(cl_{\Psi}(U)) \subseteq int_{\xi}(cl_{\xi}(V))$ and then f is almost strongly λ -continuous.

Example(3-9): let $X = \{a,b,c,d\}$ and $\Psi = \{X,\emptyset, \{a\}, \{a,b\}\}$

 $\Psi_{\lambda} = \{X, \emptyset, \{a\}, \{a,b\}, \{b\}, \{d\}, \{a,d\}, \{b,d\}, \{a,b,d\}\}$

Y={r,p,q} and ξ={Y,Ø,{r},{q},{r,q}}.let f: (X,Ψ,Ψ^α)→(Y,ξ,ξ^α) defined by f(a)=f(b)=p, f(c)=q then f is weakly λ-continuous but it is neither λ-continuous nor almost λ-continuous

Example(3-10): let X=R and Ψ =co-countable topology and Y={a,b}, ξ ={Y,Ø,{a}}.let f: (X, Ψ,Ψ^{α}) \rightarrow (Y, ξ,ξ^{α}) define by f(x)=a if x \in Q and f(x)=b if x \in Q^c then f is almost λ -continuous and strongly λ -continuous but not λ -continuous.

Definition(3-11): A function f: $(X, \Psi, \Psi^{\alpha}) \rightarrow (Y, \xi, \xi^{\alpha})$ is said to be faintly λ continuous if for each $x \in X$ and each λ -open set V containing f(x) there exist Ψ -open
set U containing x such that $f(U) \subseteq V$.

Lemma(3-12): if the function f: $(X, \Psi, \Psi^{\alpha}) \rightarrow (Y, \xi, \xi^{\alpha})$ is faintly λ -continuous and g: $(Y, \xi, \xi^{\alpha}) \rightarrow (Z, \omega, \omega^{\alpha})$ is strongly λ -continuous then gof is strongly λ -continuous proof: let $x \in X$ and Vis ω -open set containing g(y) where y=f(x), since g is strongly λ -continuous there exist λ -open set U in Y such that $g(cl_{\xi}(U)) \subseteq V$ since f is faintly λ -continuous there exist

Lemma(3-13): if the function f: $(X, \Psi, \Psi^{\alpha}) \rightarrow (Y, \xi, \xi^{\alpha})$ is λ -continuous and g: $(Y, \xi, \xi^{\alpha}) \rightarrow (Z, \omega, \omega^{\alpha})$ is faintly λ -continuous then gof is λ -continuous proof: let V is ω -open set n Z since g is faintly λ -continuous g⁻¹(V) is ξ -open set in Y, since f is λ -continuous f¹(g⁻¹(V)) is λ -open set in X. since f¹(g⁻¹(V))=(gof)⁻¹ then gof is λ -continuous. **Theorem(3-14):** if f: $(X, \Psi, \Psi^{\alpha}) \rightarrow (Y, \xi, \xi^{\alpha})$ is faintly λ -continuous such that X is extremely disconnected then f is strongly λ -continuous(almost λ -continuous) Proof: let $x \in X$ and V is ξ -open set containing f(x) since f is faintly λ -continuous and V is λ -open set in Y there exist Ψ -open set U containing x such that $f(U) \subseteq V$, now since X is Ψ -extremely disconnected and U is λ -open set in X $f(cl_{\Psi}(U)) \subseteq V$ and there for f is strongly λ -continuous.

V-Super λ -continuous and completely λ -continuous

Definition(4-1): a mapping f: $(X, \Psi, \Psi^{\alpha}) \rightarrow (Y, \xi, \xi^{\alpha})$ is super λ -continuous if and only if for each $x \in X$ and ξ -nbd V of f(x) there exist λ -open set U in X such that f(int_{Ψ}(cl_{Ψ}(U))_{\subseteq}V.

Definition (4-2): a mapping f: $(X, \Psi, \Psi^{\alpha}) \rightarrow (Y, \xi, \xi^{\alpha})$ is completely λ -continuous if and only if for each $x \in X$ and ξ -nbd V of f(x) there exist Ψ -regular open set U in X such that $f(U)) \subseteq V$.

From these definitions we obtain the following diagram

 $\begin{array}{c} \text{Completely } \lambda \text{-continuous} \Rightarrow \text{faintly } \lambda \text{-continuous} \Rightarrow \lambda \text{-continuous} \\ \downarrow & \downarrow \\ \text{Strongly } \lambda \text{-continuous} \Rightarrow \Rightarrow \Rightarrow \Rightarrow \text{ almost } \lambda \text{-continuous} \\ \downarrow & \downarrow \end{array}$

Weakly λ -continuous

Theorem(4-3): if the mapping f: $(X, \Psi, \Psi^{\alpha}) \rightarrow (Y, \xi, \xi^{\alpha})$ is super λ -continuous such that (X, Ψ) is semi regular space then f is completely λ -continuous. Proof: let $x \in X$ and V is ξ -nbd of f(x), since f is super λ -continuous there exist λ -open set U in X such that $f(int_{\Psi}(cl_{\Psi}(U)) \subseteq V$ and since X is Ψ -semi regular space then $f(U) \subseteq V$ then f is completely λ -continuous.

Theorem(4-4): if the mapping f: $(X, \Psi, \Psi^{\alpha}) \rightarrow (Y, \xi, \xi^{\alpha})$ is completely λ -continuous such that (X, Ψ) is extremely disconnected then f is almost strongly λ -continuous. Proof: let $x \in X$ and V is ξ -open set containing f(x), since f is completely λ -continuous thre exist regular open set U containing x such that $f(U) \subseteq V$, since U isregular open then $f(U) \subseteq V \subseteq int_{\xi}(cl_{\xi}(V))$, also since X is Ψ -exteremly disconnected then $f(cl_{\Psi}(U)) \subseteq int_{\xi}(cl_{\xi}(V))$

Theorem(4-5): if the mapping f: $(X, \Psi, \Psi^{\alpha}) \rightarrow (Y, \xi, \xi^{\alpha})$ is weakly λ -continuous such that (X, Ψ) is semi regular space and (Y, ξ) is extremely disconnected then f is super λ -continuous.

Poof: let $x \in X$ and V is ξ -open set containing f(x), since f is weakly λ -continuous there exist λ -open set U containing x such that $f(U) \subseteq cl_{\xi}(V)$, now since X is Ψ -semi regular space and Y is ξ -extremely disconnected then $f(int_{\Psi}(cl_{\Psi}(U)) \subseteq V$ and then f is super λ -continuous.

References :

M.K. Singal and A.R.Singal , "Almost continuous mapping", Yokohama J. Math. 16 (1968), 63-73.

- Muushi. B. M. and Bassan, D.S. "Super continuous mappings" Indian j. Pare Appl.Math.13(1982) 229-236.
- M. Saleh, "on almost strong θ-continuity" Far East J. Math. Sci., 2000, 257-267.

- Noiri,T."properties of some weak forms of continuity" Internet. J. Math. and Math.Sci.10 on 1(1987) 97-11.
- Reilly,I.L. and Vamanamunthy, M.K. "on completely continuous mapping "35 (1983) 151-161.
- T.Noiri and Sin Min Kang, "on almost strongly θ-continuous functions ", Indian J. Pure Appl. Math. 15 (1984), 1-8.
- T.Noiri, "properties of θ-continuous function", Atti Accad. Naz. Lincei Rend. Cl.Sci.Fis. Mat.Natur.,(8),58(1975),887-891.
- T.Noiri, and valeriu Ppa, "weak forms of faint continuity" Bull.Math. de la Soc.Sci.Math.de la Rumania, 34(82),1990, 263-270.
- J.chew and J.Tong "some remarks on weak continuity "Math. Monthly, 98(1991), 931-934.

Hassna H.and Sajda K. "continuity in Bitopological spaces", 2005, to appear.

بعض أنواع λ-continuous في الفضاءات ثنائية التبولوجي

ملخص البحث: الغرض من هذا البحث هو در اسة بعض أنواع الدوال المستمرة في الفضاء ثنائي التبولوجي بلا ضافة إلى در اسة بعض النظريات والعلاقات بين هذه الدوال .